
July 2000 The Delphi Magazine 57

IBSec: Securing InterBase
Network Traffic On The Fly
by Jani Järvinen

After the inclusion of the
InterBase Express compo-

nents in Delphi 5, InterBase has
gained popularity in all kinds of
database applications. Personally,
I like to use InterBase because I find
it fast, reliable and compact. Fur-
thermore, it is a pure SQL database
and can thus be operated with the
same principles as products like
Oracle and Microsoft SQL Server.

One problem with InterBase,
however, is that all the network
communication between the
InterBase server and the client
application is unencrypted (ie, it is
plaintext). This means that some-
one with a network monitor could
easily see the data the application
and the server exchange.

Of course, this is not a problem
when InterBase is operated locally,
or in physically secured intranets,
but in the public internet and in
extranet systems the network
transmissions must be encrypted.
Because InterBase does not have
an option to enable encryption of
transmissions, we have to develop
the required security features
ourselves.

When developing these kinds of
solutions, it is best to design them
so that existing applications are

not broken. As you might guess,
this is more easily said than done,
but in my opinion this is the only
reasonable way to do it.

In this article, I will represent an
application named IBSec, short for
InterBase Security. It allows you to
secure your InterBase TCP/IP
network traffic without breaking
existing applications. Before look-
ing at the code, let’s take a look at
the design of IBSec.

Securing InterBase Traffic
To transparently secure InterBase
network traffic, we must somehow
‘capture’ the normal plaintext
InterBase network traffic, transmit
it in encrypted form over the
internet, then decrypt the data at
the other end. Finally, the
unencrypted data can be sent to
the InterBase server.

Not counting the ‘local’ connec-
tion method, InterBase supports
three communication protocols:
NetBEUI, IPX/SPX and TCP/IP.
When an InterBase client applica-
tion, say InterBase Interactive SQL
(WISQL), wants to connect to an
InterBase server using TCP/IP, it
opens up a TCP connection to a
specific IP address and port.

By default, the client application
assumes that the responding
application is the InterBase server

itself. However, it is easy to create
a TCP server application that
responds to connections on a cer-
tain port. If our application can
transparently transfer all the bytes
between the client application and
the InterBase server, the client
application will still think it is
talking directly to an InterBase
server.

Because our application sits
between the client and the server,
it can do anything it likes with the
bytes transferred. Of course, in
this case, our application will
encrypt the data, but it could also
compress or cache the data.

To illustrate this concept, I’ve
drawn Figure 1. At the top, you can
see how communication between
a client application and the
InterBase server normally occurs.
Below that, you can see how IBSec
fits into the view. On the left, the
InterBase client application talks
to our IBSec client, which in turn
talks to the IBSec server. The IBSec
server finally talks to the InterBase
server. Only the communication
between the IBSec applications is
secured.

Socket Implementation
To keep IBSec simple, I’ve
restricted IBSec to support only
TCP/IP communications. Because
of this, IBSec only needs to use
Delphi’s TClientSocket and
TServerSocket components, which
wrap up the WinSock APIs into
easy-to-use entities. The TClient-
Socket component is used to con-
nect to a TCP server and the
TServerSocket is used to open up a
TCP port for client connections.

In IBSec client, an instance of a
TServerSocket is created at startup
and set to listen to connections at
the user’s request. By default,
InterBase client applications
expect to communicate with the
InterBase server at port 3050. To
keep IBSec transparent to the

Normal operationNormal operation

InterBase clientInterBase client

application, for exampleapplication, for example

WISQLWISQL

InterBase serverInterBase server
TCP port 3050TCP port 3050

TCP port 3050TCP port 3050

Operation with IBSecOperation with IBSec

InterBase clientInterBase client

application, for exampleapplication, for example

WISQLWISQL

IBSec clientIBSec client
TCP port 3050TCP port 3050

TCP port 3050TCP port 3050

IBSec serverIBSec server
TCP port 3051,TCP port 3051,

encryptedencrypted

TCP port 3051,TCP port 3051,

encryptedencrypted

InterBase serverInterBase server

TCP portTCP port

30503050

TCP portTCP port

30503050

➤ Figure 1: How IBSec fits in.

58 The Delphi Magazine Issue 59

client application, the TServer-
Socket is set to listen to this port.

Because it is normal practice to
run IBSec server on the same com-
puter as the InterBase server, we
need a second port for communica-
tion between the two IBSec appli-
cations. I’ve chosen to use the port
3051, which is free on most Win-
dows machines. If this is not the
case with your setup, feel free to
change this port by editing the
value on the main form.

As I said, the IBSec server will
communicate with the IBSec client
at port 3051. Thus, the TServer-
Socket is set to listen to this port.
Note that the IBSec application is
written so that the exact same pro-
gram can function either as a client
or as a server. The user sets the
operation mode and, when the
user clicks the Start button, IBSec
sets the server socket to listen to
either port 3050 or 3051.

Listening to TCP connections as
described previously is only half of
the socket implementation, how-
ever. When IBSec client accepts a
connection from an InterBase
client application, it instantiates a
client socket which is used to com-
municate with the IBSec server.
Similarly, when an IBSec server
accepts a connection from the
IBSec client, it creates an instance
of the TClientSocket class to
communicate with the InterBase
server.

Sockets And Messages
Delphi’s TClientSocket and
TServerSocket components can
operate in either blocking or
non-blocking modes. For simplic-
ity, I’ve chosen to use the non-
blocking mode, which is the
default for these components. The
idea behind these two modes is
that in the non-blocking mode the
application doesn’t need to wait
for data arrival, for instance.
Instead, it can continue its normal
operation until data actually
arrives.

When a connection arrives to a
server socket, the event handler
for the event OnClientConnect is
executed (see Listing 1). The event
handler first adds an entry to the
IBSec log (a simple memo field)

and then instantiates a TClient-
Socket component. Because both
the client and server sockets must
be aware of each other, the event
handler also associates pointers
both ways. Why this must be done
becomes evident when you look at
the later code listings.

On the last line of the event han-
dler you can see a call to the
PostMessage function. This Win-
dows API function posts a message
to the application’s event queue
and, after processing all other mes-
sages in the event queue, the appli-
cation will finally process the
message we posted.

The reason that we must use
such custom messages is that
Delphi’s socket components can
get confused if we attempt to oper-
ate multiple sockets inside socket
event handlers. Note that I’m
assuming here that you are familiar
with Windows message processing
and defining your own message
handlers in Delphi. If this concept
is new to you, please read the
sidebar Defining Custom Message
Handlers. Alternatively you could
consult Delphi’s help: you can find
a good introduction by typing in
the phrase ‘message handlers’.

Sending And Receiving Data
Now back to the socket implemen-
tation. When an InterBase client
application first contacts IBSec, it
immediately sends several bytes
after opening up the TCP connec-
tion to IBSec. Although we
instantly create a client socket (a
‘slave’ socket), the client socket
will not be immediately ready to be
used for communications.

This is a problem that can be
solved by using a data queue. That
is, instead of sending data read
from the server socket immedi-
ately to the client socket, we store
the data in a queue, and only send
the queue when the client socket is
ready. The code that handles the
queue can be seen in Listing 2,
which shows part of the OnClient-
Read event handler of the server
socket.

Although a queue is a good solu-
tion to this problem, it is not very
effective performance-wise. To
keep IBSec’s performance at an
acceptable level, I’ve chosen to
use the queue only when a client
socket is not ready for communica-
tions. If it is, I will instead send the
data immediately through the
client socket.

procedure TIBSecMainForm.ServerSocketClientConnect(Sender: TObject;
Socket: TCustomWinSocket);

Var CS : TClientSocket;
begin
LogMessage('Client '+Socket.RemoteAddress+' connect');
Assert(Socket.Data = nil);
CS := TClientSocket.Create(Self);
CS.Socket.Data := Socket;
Socket.Data := CS;
PostMessage(Handle,wm_ConnectSocket,Integer(CS),Integer(Socket));

end;

➤ Listing 1: Handling the OnClientConnect event on the server socket.

BufLen := 16*1024; { 16k }
Buffer := StrAlloc(BufLen);
BufLen := Socket.ReceiveBuf(Buffer^,BufLen);
If CryptData.Checked Then Begin
If (Operation.ItemIndex = Server) Then
Decrypt(Buffer,BufLen)

Else
Encrypt(Buffer,BufLen);

End;
LogMessage('ServerSocket.ClientRead '+IntToStr(BufLen)+' bytes');
If ((Socket.Data = nil) Or

(Not TClientSocket(Socket.Data).Socket.Connected)) Then Begin
{ save the buffer in a queue }
New(DataRec);
With DataRec^ do Begin
ServerSocket := Socket;
DataBuffer := Buffer;
BufferLen := BufLen;

End;
SendQueue.Add(DataRec);

End;

➤ Listing 2: Reading data from the server socket.

60 The Delphi Magazine Issue 59

In Listing 3 you can see part of
the code for the WM_SendQueue mes-
sage handler. As I didn’t want to
use any custom threads in IBSec,
I chose to use Windows messages
to inform IBSec that there is data
waiting in the queue to be sent.

Although not technically neces-
sary, IBSec uses a TThreadList class
to represent the data queue.
TThreadList is, as it name implies, a
thread-safe list. In its current
implementation, all IBSec methods
and event handlers get called in the
main-thread context, as can be
seen from the log entries (the
GetCurrentThreadID function is
used to verify this).

TThreadList is not mandatory in
the current implementation of
IBSec (we could have used TList
instead), but I wanted to use it just
in case you want to use IBSec’s
code in a multi-threaded applica-
tion. This way you do not need to
rewrite the data queue handling.

Handling Disconnections
When an InterBase client applica-
tion wishes to disconnect from the
IBSec client, we must gracefully
disconnect all the slave connec-
tions too. Generally, the InterBase
client application will commit any
pending transactions just before
disconnecting, so IBSec must be
prepared to handle data transmis-
sions even if disconnection occurs
immediately after receiving the
data.

When the client disconnects, the
IBSec client receives the OnClient-
Disconnect event on the server
socket (see Listing 4). Here, the
client socket is disconnected by
setting its Activeproperty to False.
Note that this does not force us to
create a custom message handler
to disconnect the socket.

The situation is different, how-
ever, when a disconnection occurs
on the client socket level
(TClientSocket.OnDisconnect). In
this case we must again use a
custom Windows message to
disconnect the master connection.
Although it is the InterBase client
application that most often initi-
ates the disconnection, we must be
prepared to handle different cases
as well.

Similarly, IBSec must be pre-
pared to handle certain communi-
cation errors. For example, the
TCP connection might spontane-
ously abort, maybe because of a
hardware error. The server
socket’s OnClientError and the
client socket’s OnError event han-
dlers handle such errors. For
example, if a WSAECONNABORTED error
(defined in WinSock.pas) occurs,
IBSec knows to disconnect all the
necessary connections.

Keeping A Secret
Up to this point, we have only dis-
cussed how IBSec communicates
using the sockets. Of course, IBSec
wouldn’t be IBSec without cryptog-
raphy. IBSec uses the Microsoft
CryptoAPI for encryption and
decryption of data.

The Microsoft CryptoAPI (or
CAPI for short) was introduced in
1996 and has since been an integral
part of Microsoft’s operating sys-
tems. Windows 95 didn’t originally
include CAPI, but upgrading
Internet Explorer brought CAPI to
Windows 95 too. Users of Windows
NT 4.0 and Windows 2000 do not
need any additional components,

as CAPI is installed on these
systems by default.

CAPI is an easy-to-use interface
that lets the application developer
add all kinds of cryptography
services to his or her application.
For example, CAPI supports digital
signatures, authentication, key
exchange and, of course, data
encryption and decryption.

The problem with CAPI for
Delphi developers has been that
the C language header files had
not been translated into Object
Pascal. I’ve done my own conver-
sion of the header files: the results
are in WinCrypt.pas on the disk.

CAPI supports a multitude of
cryptographic algorithms, but for
IBSec we need one that does not
affect the number of bytes trans-
ferred. One such algorithm is RC4,
which is supported by all CAPI ver-
sions. It is a streaming cipher
developed by RSA Data Security
Inc in 1987 (see the reference at the
end of the article for details).

Using CryptoAPI
When IBSec is started, it initialises
CryptoAPI. This is called ‘acquir-
ing a context’, and the code for this

With SendQueue do Begin
List := LockList;
Try
LogMessage('Sending queued buffers: '+IntToStr(List.Count));
For I := 0 to List.Count-1 do Begin
DataRec := List[I];
With DataRec^ do Begin
Client := ServerSocket.Data;
If ((Client = nil) Or

(Not Client.Socket.Connected)) Then
Retry := True

Else Begin
Bytes := Client.Socket.SendBuf(DataBuffer^,BufferLen);
LogMessage(IntToStr(Bytes)+' bytes sent');
List[I] := nil;
StrDispose(DataBuffer);
Dispose(DataRec);

End;
End;

End;
List.Pack; { pack the queue }

Finally
UnlockList;

End;
End;

➤ Listing 3: Handling the thread-safe data buffer queue.

procedure TIBSecMainForm.ServerSocketClientDisconnect(Sender: TObject;
Socket: TCustomWinSocket);

begin
LogMessage('Client '+Socket.RemoteAddress+' disconnect');
With TClientSocket(Socket.Data) do Begin
Active := False;
Free;

End;
Socket.Data := nil; { make sure no dangling pointers exist }

end;

➤ Listing 4: Disconnecting the client.

July 2000 The Delphi Magazine 61

operation can be seen in Listing 5.
Note that we must be prepared to
handle the situation where the
initial acquiring fails. This might
happen if CAPI has not yet been
used by any application, for
instance because the operating
system has just been installed.

After initialising CAPI, we need
to create a key to be used for
encryption and decryption. The
easiest way to create a key in CAPI
is first to hash a password string,
and then derive the key from the
hash. We do this by calling the
CAPI functions CryptCreateHash,
CryptHashData and CryptDeriveKey.

After a key has been generated,
IBSec is ready to encrypt and
decrypt data. As you might guess,
data coming from the InterBase
client application is encrypted
before being sent to IBSec server,
and then decrypted by the IBSec
server before being sent to
InterBase. To keep the data secure
both ways, this also happens vice
versa.

Encrypting and decrypting data
is simple. Whenever data needs to
be encrypted, IBSec calls a method
called Encrypt, which takes a
pointer to the data buffer and the
buffer length as parameters. Then,
it calls CAPI’s CryptEncrypt
function, which will encrypt the
data in the buffer (see Listing 6).

Similarly, when IBSec must
decrypt data, it calls the Decrypt
method, which will use the
CryptDecrypt function to do all the
dirty work. Note that RC4 is an
interesting algorithm, in that

encrypting the same data twice
results in the original (plaintext,
unencrypted) data. Because of this
we could have replaced all of
the calls to Decrypt with calls to
Encrypt.

Putting IBSec To Work
Now that you understand quite a
bit about IBSec’s internal work-
ings, it is time to see how IBSec
works in practice. To run IBSec,
you need at least two computers
connected using a TCP/IP network.
This doesn’t need to be a LAN, it
could be a modem connection just
as well.

To proceed, first make sure that
the InterBase server is started on
the server machine. Then start the
IBSec server on that machine (see
Figure 2). Optionally, you can start
IBSec on a different computer, but
then the communications between

the InterBase server and IBSec will
not be secure.

In the Operation group box,
select the option Act as server,
and then set the IP address of the
InterBase server. If you want to,
you can change the secure port
number and the password, but this
is not really needed. Please note
that the port and password must
be the same on both the IBSec
client and server. By default the
password is ‘secret’, which is
probably the most difficult pass-
word for any hacker to guess... J
You will change it, won’t you?

After all the settings have been
made, click the Start button. This
will then put IBSec into listening
mode, and after the ‘Starting
server services’ message appears
on the log, IBSec is ready to accept
communications.

Now, go to your client machine
and fire up IBSec client. The Opera-
tion group box already indicates
the correct operation mode, so all
you need do is type in the IP
address of the IBSec server. If you
changed the port and/or password
on the IBSec server, modify the
settings so that they are equal.

After clicking the Start button
on the IBSec client (see Figure 3),
you’re ready to start any InterBase
client application. For example, try
the InterBase Interactive SQL
(WISQL) tool. In the connection
dialog box, create a remote server
connection to the IBSec client

Procedure TIBSecMainForm.AcquireCAPIContext;
Begin
If (Not CryptAcquireContext(@CAPIProvider,nil,MSDefProv, ProvRSAFull,0))
Then Begin
{ Couldn't aquire context -- try to create a new keyset (init user). }
If (Not CryptAcquireContext(@CAPIProvider,nil,MSDefProv, ProvRSAFull,
CryptNewKeySet)) Then Begin
Raise Exception.Create('Cannot acquire context ' +
'to default provider: '+ SysErrorMessage(GetLastError));

End;
End;

End;

➤ Listing 5: Initialising CryptoAPI.

➤ Listing 6: Encrypting data with CAPI.

➤ Figure 2: IBSec server running.

Procedure TIBSecMainForm.Encrypt(Buffer : PChar; BufLen : Integer);
Begin
If (Not CryptEncrypt(CAPIKey,0,False,0,Buffer,BufLen,BufLen)) Then
Raise Exception.Create('Cannot encrypt data: '+
SysErrorMessage(GetLastError));

End;

62 The Delphi Magazine Issue 59

(normally you would connect to
the InterBase server directly). Use
the InterBase example database
Employee.gdb.

After clicking OK, you should see
many log entries running up in
IBSec’s logs, both on the client and
the server. If everything goes
smoothly, Interactive SQL will
simply go into the connected state.
Now try to enter a SQL statement
like SELECT * FROM EMPLOYEE and hit
Ctrl+Enter. After a lot of communi-
cations back and forth, you should
finally see the results in WISQL.

Further Testing
If you want to test IBSec even more,
try to extract metadata from the
database by choosing the Extract
database command from the
Metadata menu in WISQL. Let me
warn you though: this can take a
while! If you want to speed up the
process, disable logging in both
the IBSec client and server.

To disable logging, try right
clicking the log in IBSec and
choosing the Log Enabled com-
mand (note the Clear Log com-
mand also) from the popup menu
which appears. When there’s a
check mark next to the command
name, logging is enabled. I found
that disabling the logging feature

could dramatically improve
IBSec’s performance.

You can further increase the per-
formance of IBSec by disabling
encryption, although by doing this
you lose the whole point of using
IBSec! To disable encryption, click
the Crypt checkbox in IBSec before
hitting the Start button. It is not

possible to change this setting on
the fly.

Another interesting way to test
IBSec is to use Delphi’s SQL
Explorer (Figure 4). Of course, you
will need to define a BDE alias that
points to the IBSec client. In my
opinion this test is definitely worth
the few seconds it takes to define
an alias. In SQL Explorer you can
truly see what happens when you
click around inside the database.
Almost every click creates net-
work transmissions, something I
was never aware of.

And if you’re really anxious,
enhance IBSec by adding a hex
dump of the transmitted data. By
doing this you could easily see
how InterBase communicates with
its client application. That would
be SQL in binary format, I suppose.

Wrapping It All Up
Having got this far, you should
have a good understanding of what
IBSec can do for you. As you have
seen, Delphi’s native socket com-
ponents can be used even for these
kinds of advanced solutions.

I’m sure you have already
thought of it, but IBSec is not

Defining Custom Message Handlers
Let’s say you need to create an AfterShow event for your application’s main
form. One way to solve this problem is to define a custom Windows message,
and handle it like any normal event. When your app needs to define a custom
Windows message, you first need to declare a unique constant value for it:

Const
wm_AfterShow = wm_User+1000;

It is important to use the wm_User constant as a base value, because otherwise
you could interfere with the normal message processing. After defining the
constant, you need to declare a message-handling method for it:

type
TForm1 = class(TForm)
...
Procedure WMAfterShow(Var Msg); Message wm_AfterShow;

end;

After this, you could handle the message just as you see fit. But remember
that the code will not be executed without a call to PostMessage. It is best to
call it in the form’s OnShow event handler:

procedure TForm1.FormShow(Sender: TObject);
begin
PostMessage(Handle,wm_AfterShow,0,0);

end;

➤ Figure 3:
IBSec in the client mode.

July 2000 The Delphi Magazine 63

limited to securing only InterBase
network traffic. It can secure any
network traffic if you just change
the port numbers and recompile!
You could have secure Telnet, FTP,
HTTP and email sessions, just by
deploying a customised IBSec
version to the right servers. It’s
that easy with TCP!

If you are interested in CAPI, I
would suggest getting your hands
on a Microsoft Developers Net-
work (MSDN) Library CD-ROM,
which includes a lot of information
about CAPI, as well as other
Microsoft technologies. You can
also find most of the MSDN mate-
rial for free on the internet, at

➤ Figure 4: Accessing an InterBase database through IBSec.

http://msdn.microsoft.com (I’m
sure you will immediately book-
mark the site!).

I hope you will find IBSec a useful
tool. If you want to create
customised versions of IBSec, feel
free to do so. Email is always wel-
come, so if you create cool IBSec
customisations, do let me know!

Reference
Bruce Schneier: Applied Cryptogra-
phy, Second Edition. John Wiley &
Sons, 1996.

Jani Järvinen works as a technical
support person for Inprise prod-
ucts. He specializes in internet
and Windows API technologies.
Contact him at janij@dystopia.fi

	Securing InterBase Traffic
	Socket Implementation
	Sockets And Messages
	Sending And Receiving Data
	Handling Disconnections
	Keeping A Secret
	Using CryptoAPI
	Putting IBSec To Work
	Further Testing
	Defining Custom Message Handlers
	Wrapping It All Up
	Reference

